
Abstract. The repulsive ground electronic state X2R� of
HeH is strongly coupled to the Rydberg states at small
interatomic distances. Such large couplings also occur
between some of the Rydberg states. HeH� ions that
capture an electron in a Rydberg state end up in
separated He and H atoms by indirect predissociation.
This paper presents a study of potential functions and
pertinent matrix elements involving the lowest electronic
states: the 2R� states, X, A, C, and D, and the 2P states
B and E. Individual transition rates as well as total
radiative and non-radiative lifetimes have been comput-
ed for the lowest vibrational and rotational levels.
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1 Introduction

The small two-electron ion HeH� is of considerable
astrophysical interest due to its predicted presence in
many interstellar environments. In the primordial gas,
for instance, the initial formation of the ion is assumed
to have occurred in a radiative association process either
in the direct single-state reaction

He�H� ! HeH��X1R�� � hm �1�
or in the two-state reaction

He� �H! HeH��A1R�� ! HeH��X1R�� � hm ; �2�
whereas the most e�cient depletion of the ion in this
environment is most likely via dissociative recombina-
tion (DR) with electrons according to

HeH��X1R�� � e! He�H : �3�

DR has been known for many years [1] to be a fast
process if the ground electronic state potential of the
molecular ion is crossed close to its minimum by the
repulsive potential of an appropriate neutral unstable
state which is assumed to have a doubly excited electronic
con®guration relative to the initial (ion+continuum
electron) state in order to explain the removal of the
kinetic energy of the captured electron [2]. This mecha-
nism is usually called the direct process and many of the
DR reactions for which large reaction rate constants
have been measured were therefore assumed to proceed
according to this mechanism [3]. Recently it was
recognized [4], however, that the occurrence of a suitable
potential curve crossing close to the minimum of the
potential is not a necessary condition for the e�ciency of
the process. Considering, for example, a number of small
molecular ions such as HeH�, H�3 , and HCO�, which are
all of prime astrophysical interest and for which fairly
large DR reaction rate constants were measured using
di�erent experimental setups, it is possible to demon-
strate on the basis of extensive ab initio calculations that
for all these ions suitable curve crossings do not exist
[5±7]. It has been shown instead that single-electron
radiationless transitions within the sequence of associat-
ed Rydberg states can e�ciently replace the correspond-
ing two-electron transitions which control the direct
crossing mode mechanism [8]. In this so-called indirect or
tunneling mode mechanism the DR reaction is driven by
the kinetic energy operator, i.e., through the coupling of
the nuclear motion with the electronic continuum, which
indicates the breakdown of the Born-Oppenheimer
approximation for this reaction mechanism [9±11]. In
the direct process the incoming colliding electron is
captured into a dissociating valence state which has
practically very little coupling to the electronic continu-
um and the Rydberg states of the same symmetry. The
potential of this state and its properties can therefore be
reasonably well described within the Born-Oppenheimer
approximation scheme. In the indirect process, however,
electron capture takes place into the Rydberg states
converging to the ion limit and the e�ciency of the
dissociative stabilization of the capture step depends on
the strength of the couplings between the Rydberg states
and the coupling to a possibly available dissociative state.
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The essential features of these interactions are of ``non-
Born-Oppenheimer'' type and apart from detailed know-
ledge of the character of the relevant Rydberg states and
their adiabatic corrected potentials, a quantitative de-
scription of the indirect process therefore also requires
evaluation of the non-adiabatic coupling terms.

In the HeH�=HeH system the ion in its ground elec-
tronic state dissociates to He�H� with a dissociation
energy,De of only 16448:4 cmÿ1. The neutral species has a
repulsive ground electronic state X2R� with a shallow van
der Waals minimum [12] and above this state a series of
bound excited Rydberg states exists, converging toward
the lowest ionization limit. These states correlate on dis-
sociation with the H�ns� asymptote with n � 1; 2; 3. In the
commonly accepted nomenclature these states are in R�
symmetry the X, A, C, D, F, and I states, in P symmetry
the B, E, and H states, and ®nally the 12D or G state. In
previous ab initio calculations it was stated [13] that there
are no avoided curve crossings among these states, but
that rather strong radial couplings via the nuclear kinetic
energy operator exist and that due to these couplings the
excited Rydberg states are easily depopulated by either
radiative emission or predissociation processes. The
present calculations, however, showvery clearly that there
is actually an avoided curve crossing between the D and F
states at the internuclear distance R � 2:2a0 which is
manifested by the strongly peaked adiabatic correction of
the Born-Oppenheimer potential in this region.

After the ®rst theoretical prediction of the existence
of stable excited Rydberg states of HeH in 1963 by
Michels and Harris [5], which was con®rmed later by
several other ab initio calculations, the HeH molecule
gained considerable attention among experimentalists
and theoreticians because of fundamental interest in this
most simple excimer system and also because it is re-
garded as an ideally suited model system for making
direct comparisons between experiment and theory.
Rather complete coverage of previous experimental and
theoretical work on the spectroscopy of the HeH Ryd-
berg states and their depopulation processes is provided
in Refs. [14, 15].

The present study is the ®rst in a forthcoming series
of studies of DR processes of small molecular ions of
astrophysical interest employing ab initio quantum
chemical methods for studying the reaction energetics,
and especially making use of the restricted active space
state interaction (RASSI) method for evaluating the
couplings between the (ion + continuum electron) and
the electron capture states. Since the HeH� + electron
DR process proceeds according to the indirect reaction
mechanism, the present study is concerned with the
spectroscopy of the HeH Rydberg states and their
radiative emission and predissociation properties. The
potential energies of the HeH states were calculated
within the Born-Oppenheimer approximation at the
multi-reference con®guration interaction (MRCI) level
of theory, whereas adiabatic corrections to the potentials
and non-adiabatic couplings between the states were
determined from restricted active space self-consistent
®eld (RASSCF) wave functions. For this system, the
RASSCF calculations are quite accurate. For the present
three-electron system a full con®guration interaction

(FCI) treatment could have been applied throughout.
However, since the same kind of calculations will also be
done for larger systems, it was decided to do the calcu-
lations on the present approximation level.

The present study describes calculations of the spec-
troscopic constants for the six lowest bound excited
Rydberg states of HeH and the radiative lifetimes of the
lower vibrational levels using presently calculated adia-
batic potentials including adiabatic corrections and it
also presents calculations of the total radiative transition
rates obtained directly by contour integration as well as
non-radiative transition rates computed from Golden
Rule matrix elements over adiabatic wave functions. In
contrast to the previous study by van Hemert and
Peyerimho� [14] which includes only the D/C radiative
transition and the A/X predissociation, the present study
o�ers a complete set of data for all possible transitions
within the lowest six states of HeH. In a very recent
study by Vegiri [16], on the other hand, who performed a
similar complete investigation of all possible transitions
it appears that usage was made of some coupling data
computed earlier by Petsalakis et al. [17, 18] which were
found here to be not very reliable. In this situation it
seems to be well-justi®ed that in the present study an-
other attempt is made to provide a complete and con-
sistent analysis of the lower HeH Rydberg states.

2 Methods

2.1 Basis sets

It is often fairly easy to get relative energies correct for
the lowest Rydberg states, since they have a positive ion
core in common and the Rydberg electron introduces
only minor correlation e�ects. The necessary extra
di�use basis functions can usually be designed by a rule
of thumb: a small set of extra primitive Gaussians are
chosen with maxima at the same radial distance as the
hydrogenic wave functions, and an additional set is
chosen with maxima somewhere between these values.
(The second set is necessary in order to achieve the
¯exibility that allows optimized quantum defects.) In the
present case, we want to determine accurate coupling
matrix elements as well as energies. Therefore, a more
elaborate optimization procedure was used.

Furthermore, all the excited electronic states consid-
ered in this study dissociate into ground state He and an
excited H atom (see Fig. 1). This causes a qualitative
di�erence between the exact adiabatic wave functions
and those computed by a standard LCAO aproach with
any Gaussian basis. At some ®nite distance, the com-
puted wave functions change character fairly abruptly.
Asymptotically, they describe the excited H atom as
having fairly pure s; p, or d character. At shorter dis-
tances, they change over to represent the static dipolar
hydrogenic states (the ``parabolic states'' unique to a
hydrogenic atom), with the large static dipole moment
coupled to a polarized He atom. Since the components
of the hydrogenic main shells are exactly degenerate, the
exact adiabatic wave functions do not show such a
switch in character at any ®nite distance. We do not
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want to have to worry about the e�ects of the non-
physical switching from dipolar to unpolarized charac-
ter, and we thus want to allow the basis set to describe
hydrogenic main shells which are accurately degenerate.

We started with a conventional atomic natural orbital
(ANO) basis set, which is able to give reasonably good
results, including correlation, for valence states of neu-
tral HeH and for the HeH� ion core. An additional basis
set was designed by calculations on hydrogenic one-
electron problems as follows. For any given set of
primitive Gaussians, the exact 1s function was projected
away, and a calculation was made for the lowest states.
The basis set parameters were optimized for the lowest
possible sum of energies. By projecting away the 1s or-
bital, we express our assumption that the basis functions
are to be used in addition to a conventional valence basis
set. (If this is not done, optimization of the 1s functions
may well dominate the procedure and give too con-
tracted basis functions. After optimization it will also be
di�cult to separate the innermost basis functions and
replace them with the conventional basis.) In order to
achieve the ¯exibility for quantum defects, the calcula-
tion also included a non-physical poblem, with 1/2
added to the angular quantum number, representing
roughly half-integer values of the e�ective main quan-
tum number. A Rydberg basis of ANO type, with a 5s,
5p, 3d, and 2f function was ®nally chosen. With this
basis set, the largest energy error for hydrogenic Ryd-
berg states, with n=1±4 , was 0.0004 a.u. and occurred
for the 4d state. The basis set and the optimizer can be
obtained from the authors.

2.2 Calculation of electronic states

For the electronic structure calculations, we used the
MOLCAS [19] suite of programs with some modi®ca-
tions.

Adiabatic electronic states were computed by two
di�erent programs: for the potential functions, we used
the MRCI program of Siegbahn and Blomberg [20],
while adiabatic corrections to the potential and non-
adiabatic coupling matrix elements were computed from
RASSCF wave functions [21, 22].

Obviously, for a three-electron problem, it would
make sense to use the FCI method instead for all
quantities. For larger systems, however, it is preferable
to use the RASSCF method, since then we can easily
compute any matrix elements even with separately
optimized wave functions. On the other hand, the
RASSCF method cannot give as high accuracy for the
potentials as an MRCI calculation.

For wave functions of the RASSCF type, matrix el-
ements of one-electron and two-electron operators can
be very rapidly computed, given the one-electron or two-
electron integrals of the operators over the AO basis set.
This is also just as easy if the bra and the ket side use
di�erent orbitals, and if the orbitals (and thus the basis
functions for the CI wave function, i.e., the con®gura-
tion functions) are non-orthogonal [23, 24]. A program
called RASSI [25] in the MOLCAS package was modi-
®ed for our purposes, so that it could compute arbitrary
matrix elements of the following types:

hw1jÂjw2i
hw1jÂj@=@Qpw2i

hw1jÂj@2=@Qp@Qqw2i ;

where Â is any one-electron operator for which integrals
can be provided. The independent variables Qp; Qq are
arbitrary linear combinations of cartesian coordinates in
the coordinate frame used for the electronic calculations.
Derivatives of AO integrals were computed by numerical
di�erentiation. These matrix elements can also be
computed if Â is the two-electron part of a product of
two such one-electron operators.

In the present investigation, we needed only two
matrix elements involving di�erentiation, namely
hw1j@=@Rw2i and hw1j@2=@R2w2i. We also computed

matrix elements of the one-electron operators l̂x, l̂z, L̂y ,

L̂z, P̂ x, and P̂ z, and of the two-electron operators L̂
2
and

P̂
2
in the conventional way. Here, l is the electronic

dipole moment operator, L̂ is the electronic angular
momentum, P̂ is the electronic linear momentum, and
the molecule is oriented along the z-axis. The use of these
quantities will be described later.

For the calculation of the matrix elements, our
present implementation assumes that the qualitative
structure of the bra and ket wave functions are the same:
they have the same number of inactive, RAS-1, RAS-2,
RAS- 3, and virtual orbitals. The RASSCF calculations
have therefore been subdivided into two steps each: a
preliminary calculation, which serves only as an orbital
generator, and a second step, which only performs the
CI without orbital reoptimization, which we will call a
RASCI calculation.

Fig. 1. Potential curves of the HeH� ground state and the lowest
states of HeH
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In the RASCI step, there are no inactive orbitals, and
the active orbital space comprises 19 orbitals. These are
subdivided into 5 RAS-2 and 14 RAS-3 orbitals (there
is no RAS-1 in this case), and at most two electrons are
allowed in the RAS-3 space. Thus, the RAS-2 space is
always occupied by at least one electron. Schematically,
it contains the He 1s, 2s, 2pz orbitals of r symmetry, and
the He 2px;y orbitals of symmetry px and py . The RAS-3
orbital space is occupied by at most two electrons and
contains the hydrogenic Rydberg orbitals with n � 1±3.
There are 5r; 3p and 1d functions, the latter two having
two components each. The calculation was actually done
using real orbitals in C2v rather than C1v symmetry, with
equivalence of p components enforced.

The above description of the orbital character is
oversimpli®ed in several respects: it is valid only for long
distances, so the characterization should be taken in the
sense of a correlation to the dissociation limit. Also,
within each main shell the indicated AO's actually mix,
as already mentioned, to form ``parabolic'' states with a
static dipole moment along the z-axis. Finally, they are
obviously not unperturbed atomic functions, nor se-
lected for their approximate atomic character, but have
been obtained from the orbital optimization RASSCF
step.

This preliminary RASSCF calculation di�ered for
four di�erent cases. These were: the ground state; the
average of the ®rst seven states in A1 (which comprised
the ground state, ®ve Rydberg sigma states, and one
delta state); the average of the three lowest states of
symmetry B2 (three Rydberg 2P states); and the lowest
state of symmetry A2 (a delta state, symmetriclly equiv-
alent to the one in symmetry A1).

For the ground state, we used a CASSCF calculation
with six active orbitals: four a1, one b2, and one b1 (the
latter are actually equivalent). Quasicanonical orbitals
are formed: those that diagonalize a Fock matrix, but
allowing only actives to mix with actives, and virtuals
with virtuals. In symmetry a1, these orbitals form the
sequence He 1s, H1s, He2s, He2pz, H2s..., which is then
reordered in the proper sequence for the RASCI step.

Similarly, to produce any other state with optimized
orbitals, and then rearrange to ®t the RASCI scheme,
takes some forethought and is tedious to describe in full
detail. Of course, once the whole procedure was set up, it
ran automatically through all calculations. A more de-
tailed description may be obtained from the authors.

Since matrix elements involving the derivative of
wave functions were calculated by numeric di�erentia-
tion, the phase of orbitals and CI coe�cients must be
controlled. The necessary continuity was in almost all
cases guaranteed by the use of neighboring results for
restarting the RASSCF calculation at the next point.
However, it also became necessary to monitor the results
from several calculations to make sure that relative
phases were correct: for instance, hij@=@Rjji should be
close to ÿhjj@=@Rjii. The ®rst matrix element was
computed, for all states jii, with a di�erentiated wave
function @=@Rjji, and the second element was produced
in another sequence of calculations, where jii was dif-
ferentiated. Unless the relative phase of all states in each
calculation is monitored, there is a risk that non-diago-

nal matrix elements will have spurious sign changes. In
fact, it seems that the matrix elements of Refs. [17, 18],
which have been used in several studies, contain this type
of error.

All matrix elements were computed for bra states
dissociating to the n � 1; 2; 3 manifold, conventionally
named X, A, B, C, D, E, F, G, H, and I. The ket side,
which was the di�erentiated state, has so far been eval-
uated only for the states X up to E. Thus, adiabatic
corrections can only be evaluated for this subset of
states.

2.3 Calculation of rotational and vibrational states

The wave function is assumed to have the form

jNKvni �
���������������
2N � 1

4p

r
d�N�NzK
�h� exp�iNz/�vvK�R�

� Uel
Kn�R; . . . ; r0k; . . .� : �4�

The total angular momentum, excluding spin, is N̂. It is

an eigenfunction of N̂
2
, its projection on the laboratory

z-axis N̂z, and its projection on the molecular axis N̂e.
The eigenvalues are N�N � 1�; Nz, and K, where K is
identical to the electronic angular moment component
along the axis. The electronic coordinates, . . . ; r0k; . . . are
de®ned using the molecule-®xed coordinate frame.

With this wave function, the Hamiltonian is

Ĥ �ÿ 1

2m12

@2

@R2
ÿ 1

R2
N̂ÿ L̂
ÿ �2� �

ÿ 1

2�m1 � m2�
X

ij

rr0i � rr0j � Ĥ
el
; �5�

where the electronic Hamiltonian Ĥ el includes the
internuclear repulsion energy, and the integration ele-
ment is

sin h dR dh d/
Y

k

dr3k : �6�

The electronic wave function depends on the orien-
tation and magnitude of R, so this simple Hamiltonian
has somewhat complicated matrix elements, with, for
example, terms produced by j@=@R acting on the elec-
tronic wave function. If such terms are ignored, the
usual Born-Oppenheimer approximation is obtained,
with a potential function for nuclear motion, V BO

Kn �R�,
given by the expectation value of the electronic Hamil-
tonian integrated only over electron coordinates, for any
given nuclear coordinates. Corrections are de®ned in
terms of the following matrices:

AK
n0n�R� �

�
Kn0

@

@R

���� ����Kn
�

el

�7�

BK
n0n�R� �

�
Kn0

@2

@R2

���� ����Kn
�

el

�8�
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CK
n0n�R� �

�
Kn0

L̂
2

R2

�����
�����Kn
�

el

�9�

QK
n0n�R� �

�
K� 1n0

L̂
�

R

�����
�����Kn
�

el

�10�

DK
n0n�R� �

�
Kn0

22

2

X
ij

ri � rj

�����
�����Kn
�

el

: �11�

These matrices may be called the radial ®rst derivative
matrix, the radial second derivative matrix, the angular
second derivative matrix, the rotational coupling matrix,
and ®nally the mass polarization matrix.

With a basis of state functions de®ned as in Eq. (4),
the non-zero Hamiltonian matrix elements are�

NKv0n0jĤ jNKvn
�
� dn0n

Z
v�v0K�R�V BO

Kn vvK�R�dR

ÿ �h
2m12

Z
v�v0K�R�

@2

@R2
� 2AK

n0n�R�
@

@R
� BK

n0n�R�
� �

� vvK�R�dR

� �h
2m12

Z
v�v0K�R� CK

n0n�R�
ÿ �

vvK�R�dR

ÿ �h2

2�m1 � m2�
Z

v�v0K�R��DK
n0n�R��vvK�R�dR �12�

and�
NK� 1v0n0jĤ jNKvn

�
�

h2

2m12

������������������������������������������
�N ÿ K��N � K� 1�

R

r
Z

v�v0K�1�R��QK
n0n�R��vvK�R�dR : �13�

We do not consider spin, so N and Nz are good quantum
numbers. For any given electronic state Kn, the diagonal
elements of the matrices B, C, and D de®ne the adiabatic
correction to the Born-Oppenheimer potential function:

V BODC
Kn � V Rad

Kn � V Ang
Kn � V MP

Kn �14�

V Rad
Kn � ÿ 22

2m12
BK

nn�R� �15�

V Ang
Kn � 22

2m12
CK

nn�R� �16�

V MP
Kn � ÿ

22

2�m1 � m2�D
K
nn�R� : �17�

Wave functions for the nuclear motion were obtained by
solving the radial Schr�odinger equation in a ®nite element
approximation. This implies using a variational method,
with basis functions (the ``elements'') consisting of
piecewise polynomials, each represented simply by their
value at particular points on each grid interval. As has
been shown by Light et al. [26, 27], by using the proper

evaluation points for a Gauss integration scheme, the
resulting equation solver is as simple as the usual
di�erence approximation schemes. If the potentials were
piecewise polynomials, the integrals would be exact. The
only approximations are thus the incompleteness of the
basis and the resulting inaccurate representation of the
potential as a piecewise polynomial. In our implementa-
tion, the joints between the ®nite elements ± the knots ±
are included in the evaluation points. The remaining
points and the integration weights are designed to give
exact integrals for piecewise polynomials with values
continuous across knots. This is equivalent to using
Lobatto's integration formula rather than the Gauus one.

The potential and other functions of the interatomic
distance were interpolated as spline functions in an
auxiliary variable rÿk, where the exponent ÿk depended
on the physical quantity being represented. These spline
functions were ®rst ®tted to the few (typically 37) points
evaluated by the quantum chemical calculations. They
were later evaluated at the proper grid points for the
Gauss-Lobatto quadrature for the nuclear Schr�odinger
equation. Calculations were done with the Born-
Oppenheimer potential V BO or with the adiabatic
potential V BO � V BODC.

2.4 Calculation of radiative and non-radiative rates

Radiative rates in the dipole approximations are com-
monly obtained using either the dipole length or the
dipole velocity forms. Dipole and velocity matix ele-
ments over the electronic state functions were computed
by the RASSI program, which allows the states to be
expressed in separately optimized molecular orbitals.
Only the dipole matrix elements were ®nally used to
compute radiative rates, but early calculations showed
that the two forms gave excellent agreement, within a
few percent, except when two levels were very close. For
individual transitions, the radiation emission rate is
expressed by Einstein's coe�cient Afi:

Afi � sÿ10 2a3�DEfi=Eh�2ffi ; �18�
where s0 is the atomic time unit, Eh is the atomic energy
unit (1 Hartree), and a is the ®ne structure constant.
s0 � �h=Eh is 24:188 843� 10ÿ18 s, Eh is 219474:64 cmÿ1,
and a is 1=137:035 989. ffi is the dimensionless oscillator
strength,

ffi � S�DNN 0DK0� 2

3

me

h2e2

� �
DEfi

�
Z

vf �R��l�R�vi�R�dR

���� ����2 ; �19�

where S�DNN 0DK0� is theHoÈ nl-London factor, andl�R� is
a component of the electronic dipole matrix element over
the electronic state functions. The change in N quantum
number can only be DN � ÿ1; 0, or 1, conventionally
indicated by letters P ;Q, and R. The change in K can also
only be ÿ1; 0; or 1, and determines which component of
the electronic dipole moment is used.
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The total radiative rate for a given level can be
written as

ki �
Z

Ef<Ei

AfiD�Ef �dEf ; �20�

where D�E� is the density of states. It is convenient to
partition this into a sum of partial rates, one for each
®nal electronic state. Using atomic units for simplicity,
this becomes an integral

ki � 4a3

3s0

Z1
��0

�3hwijl̂P̂ �Ei ÿ ��l̂jwiid� ; �21�

where P̂�E�dE is a projector onto states with energy in
the interval �E;E � dE�.

Using Gauss' integration formula, we may reexpress
this as a contour integral.

ki � 4a3

3s0

i
2p

� �I
�Ei ÿ z�3hwijl̂�Ĥ ÿ z�ÿ1l̂jWiidz ; �22�

where z follows a closed contour which encircles those
eigenvalues of Ĥ that are lower than Ei (see Fig. 2).

By evaluating the partial rates for decay to individual
electronic states, we de®ned the integration curve from
the two quantities T 0 and V 00e : the energy of the decaying
level and the minimum potential energy of the ®nal
electronic state. We found that a circle centered at V 00e
and going through T 0 gave very accurate results. The
sum-over-states approach requires a reasonably accurate
eigenfunction for every contributing state, and any
continuum contribution must be evaluated by integra-
tion over continuum states. In the HeH case, radiative
transitions to the dissociative X state cannot be treated
by the sum-over-states approach, except possibly with a
very large e�ort in evaluating wave functions. In con-
trast, the integral in Eq. (22) can usually be evaluated
with excellent precision using, as suggested in Fig. 2, a
small number of complex points.

This scheme requires that an inhomogeneous radial
Schr�odinger equation

�Ĥa ÿ z�w� � l�R�vi�R� �23�
is solved for each complex value z used in the integra-
tion, where Ĥa denotes the Hamiltonian in the adiabatic
approximation. Complex conjugation is used to bring
down the number of z values, and the equations are
solved quite e�ciently by the preconditioned conjugate
gradient (PCG) method.

Non-radiative transition rates were computed stati-
cally from the Golden Rule expression using matrix
elements over the adiabatic wave functions:

sÿ1 � sÿ10

�����������������
2M

T 0 ÿ V 001

s
4 hw�jĤnajvii
�� ��2: �24�

Here, the function w� is a continuum wave function,
evaluated on the lower adiabatic potential, using the
same energy T 0 as the decaying vibrational eigenstate of
the upper potential, and normalized to unit amplitude at
in®nity. The operator Ĥna is the non-adiabatic part of
the Hamiltonian. The asymptotic kinetic energy � equals
the excess energy T 0 ÿ V 001.

The continuum wave function w� is obtained by
solving the inhomogeneous equation

�Ĥa ÿ T 0�w� � RHS; �25�
again by the PCG method. If the right-hand side (RHS)
is zero in every grid point except the last, it implies
that w� solves the Schr�odinger equation with energy
T 0 everywhere except at that grid point. After proper
normalization it is used as a continuum orbital.

3 Results and discussion

3.1 Potential functions

At large distances, the exact adiabatic energies are
ÿ1=2n2 a.u. below the HeH� energy. Our Born-
Oppenheimer potential functions were shifted to repro-
duce these theoretical asymptotic energy di�erences.
This required lowering the HeH potential functions by
0:1 cmÿ1 for the X state (1s), 15 cmÿ1 for states A, B,
and C (2s and 2p), while for the n � 3 asymptotes
di�erent shifts were applied: 4 cmÿ1 for the dissociation
to 3s(D), 14 cmÿ1 for the F and E states (3p), and
92 cmÿ1 for the G, H, and I states (3d).

Apart from these shifts, no further scaling was done.
The resulting asymptotic energy di�erences should now
be close to the experimental hydrogenic excitation en-
ergies if we compute the adiabatic corrections properly.
The dissociation limits for the higher states are
82259 cmÿ1 and 97492 cmÿ1 above the ground state for
n � 2 and n � 3, respectively, and the corresponding
adiabatic corrections are ÿ45 and ÿ53 cmÿ1. These
numbers are reproduced to within 1 cmÿ1 by our
calculations (see Table 1).

Adiabatic corrections to the Born-Oppenheimer wave
functions were computed for the six lowest states of
HeH (X, A, B, C, D, and E), whereas for the higher ones
(F, G, and H) and for the HeH� ground state only Born-

Fig. 2. The integration contour used in Eq. (22). The crosses mark
the points used for numerical integration. The small rings show
typical positions for bound states, while the fat line marks a
continuum

70



Oppenheimer wave functions were determined. The
adiabatic corrections and other matrix elements were
computed from RASSCF wave functions. In this simple
system, these are accurate enough. The spectroscopic
constants derived from the MRCI and from the
RASSCF potential functions are nearly the same. The
Re values di�er by about 0:003 a0, and the harmonic
vibration energies by about 10 cmÿ1.

The 4HeH and 4HeD isotopomers were considered in
the present study. A total of 212 bound states was ob-
tained, with v � 0 . . . 3 for the C state and v � 0 . . . 4 for
the others, and N � 7.

The potential function parameters and the spectro-
scopic constants derived from rovibrational levels are

shown in Tables 1, 2, and 3. The equilibrium constants
were obtained by ®tting Dunham parameters in the
so-called R representation.

E�v;N� �
X

kl

Ykl�v� 1=2�k�N�N � 1� ÿ K2�l ; �26�

where the levels with v � 0; 1; 2 and N � K;K� 1;K� 2
were used in the ®t.

For the HeH� and HeD� isotopic species spectro-
scopic constants obtained here at the Born-Oppenheimer
level of approximation are compared with those of
previous high-quality calculations by Kolos and Peek
[28] and Bishop and Cheung [29] in Tables 2 and 4, and
the agreement is found to be very good. Although the

Table 1. HeH potential function parameters with and without adiabatic correction. (Ad including adiabatic correction, BO Born-
Oppenheimer potential)

State Source V1
a.u.

V1 rel X
cm)1

De
cm)1

Re
a0

xe
cm)1

Barrier
cm)1

RBarr

a0

HeH+ X BO )2.9024123 16465.6 1.4637 3221.2
HeH X Ad )3.4017415 0 3.9 6.83 28.6

BO )3.4024123 3.9 6.83 28.6
A Ad )3.0269455 82258 20614.3 1.4005 3682.8

BO )3.0274123 20660.6 1.3993 3681.7
B Ad )3.0269459 82258 17700.2 1.4527 3312.4

BO )3.0274123 17783.7 1.4511 3317.2
C Ad )3.0269429 82259 7762.7 1.5313 2933.3 13193.1 3.97

BO )3.0274123 7841.8 1.5295 2934.2 13258.1 3.97
D Ad )2.9575390 97491 17472.5 1.4451 3357.1

BO )2.9579678 17521.3 1.4442 3357.1
E Ad )2.9575394 97491 16745.1 1.4573 3321.4

BO )3.0348846 16881.3 1.4599 3253.2
F BO )2.9579678 16548.1 1.4667 3197.5 16601.9 12.1

Table 2. HeH spectroscopic constants (cm)1) with and without adiabatic corrections. (BC using data from Bishop and Cheung [29], Exp
Ketterle et al. [15], Kolos using the potential of Kolos and Peek [28], vHP van Hemert and Peyerimho� [14])

State Source Y10

�xe�
Y20

�ÿxex�
Y01

�Be�
Y11

�ÿae�
Y02

�ÿDe�
Re=a0

HeH+ X BO 3219.2 )153.6 34.89 )2.69 )0.0164 1.4637
BC 3218.3 )153.5 34.91 )2.70 )0.0164
Kolos 3218.6 )153.5 34.91 )2.70 )0.0164 1.4632

A Ad 3707.3 )153.7 38.11 )2.61 )0.0161 1.4005
BO 3705.8 )153.5 38.17 )2.60 )0.0162 1.3993
vHP 3670.1 )154.3 37.40 )2.45 )0.0150 1.4139
Exp 3718 )161 37.90 )2.61 )0.0156 1.4003

B Ad 3319.8 )151.6 35.45 )2.62 )0.0161 1.4527
BO 3326.3 )151.6 35.53 )2.63 )0.0161 1.4511
vHP 3226.9 )145.2 34.60 )2.55 )0.0150 1.4701

C Ad 2904.2 )140.6 31.89 )2.54 )0.0153 1.5313
BO 2905.9 )140.2 31.97 )2.55 )0.0154 1.5295
vHP 2877.1 )137.7 31.43 )2.49 )0.0146 1.5424
Exp 2902 )140.6 31.84 )2.67 )0.0147 1.5324

D Ad 3313.5 )114.4 35.71 )2.48 )0.0174 1.4451
BO 3364.5 )160.0 35.81 )2.60 )0.0164 1.4442
vHP 3346.0 )167.3 35.23 )2.66 )0.0154 1.4569

E Ad 3365.9 )191.7 35.39 )2.88 )0.0148 1.4573
BO 3251.8 )154.2 35.10 )2.68 )0.0163 1.4599
vHP 3174.2 )143.3 34.42 )2.66 )0.0158 1.4739

F BO 3185.1 )147.4 34.77 )2.78 )0.0163 1.4667
vHP 3148.5 )141.1 34.13 )2.66 )0.0155 1.4802

12D(G) BO 3237.0 )154.4 35.08 )2.70 )0.0163 1.4624
vHP 3195.1 )154.3 34.33 )2.66 )0.0154 1.4758
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di�erences in absolute energies can be as large as
278:2 cmÿ1 for the vJ � 00 level, relative energy di�er-
ences turn out to be very small. Our fundamental fre-
quency of m0 � 2912:08 cmÿ1 di�ers by only 0:12 cmÿ1
and the dissociation energy D0 of 14890:9 cmÿ1 exceeds
the reference value by 9:7 cmÿ1.

The HeH ground state is strongly repulsive, with a
weak van der Waals minimum of 3:9 cmÿ1 (Experiment:
3.7 [32]). The A state is not very well characterized ex-
perimentally, owing to its very rapid predissociation to
the ground state. As we shall see, the levels are broad-
ened by many reciprocal centimeter units, and Ketterle
et al. [15] estimate an error bar of 14 cmÿ1 for the har-
monic frequency. The C state is better characterized. The
D and E states show large adiabatic correction e�ects.
For the D state, this correction has a high peak around
2:2a0. From the adiabatic MRCI potential energies, this
can be seen to be caused by an avoided crossing with the
F state, with estimated diabatic energy gap of roughly
940�Rÿ 2:19a0� cmÿ1 and an interaction matrix element
of 80 cmÿ1. The large and peaked contribution to the
energy curve gives, in particular, a too low anharmoni-
city. Since we lack the matrix elements with the di�er-
ential F state wave function, this cannot be corrected by
proper diabatization.

Except for the A and C states, there are no experi-
mental vibration data, and comparison to experiment is
limited to relative term values and rotational constants
for the 0-0 transition. We compare to the deperturbed
parameters T , B0, and D0 of Refs. [15, 30, 31]. The term
values are relative to the A state and depend on the
assumed A-B term di�erence of 2650:5 cmÿ1. Because of
the width of the A levels, the experimental T0 values are
less accurate than the di�erences. Note that term values
for the B and E states refer to a non-existing N � 0 level:
T0 is obtained by ®tting the conventional formula
T0 � B0M ÿ D0M2 with M � N�N � 1� to the lowest
rotational levels.

3.2 Radiative and non-radiative rates

The total widths computed for the lowest non-rotational
levels of the A, C, and D states are summarized in Table
5 and partial radiative rates for their decay to the X state
together with the total radiative lifetimes srad0 of these
states are collected in Table 6. A more detailed account
of the radiative and non-radiative decay rates, with the
partial rates of ®nal electronic states, can be found in
Tables 7±9.

The fast predissociation of the A state is well-estab-
lished by experiment and theory. The experimental
numbers are quite uncertain: Ketterle et al. [15] give
estimated widths of 3:1� 1 cmÿ1 for rotational quantum
numbersN < 5 and 1:2 cmÿ1 forN > 5 for the vibrational
ground state of 4HeH. For the HeD species, the corre-
sponding numbers are 1:1 cmÿ1�N < 5� and 0:5 cmÿ1.
ForHeD, they also give the width for the states with v � 1
and N > 5, namely 2:0� 1 cmÿ1. (The uncertainty in
these numbers is �0:4 cmÿ1, unless stated otherwise). All
calculations give a linewidth for the rotationless v0 � 0
state of about 3±5 cmÿ1, which increases rapidly with
vibrational excitation, and gradually decreases for larger
N . The experimental data indicate slightly smaller widths
and a stronger dependence on N than most calculations.

The diabatic coupling of the A and X states at small
distances is so large that at least a two-states coupled
channel treatment would be preferable. This is also the
case for the coupling between the C and D states, which

Table 3. HeH rotational constants (cm)1). (for abbreviations, see
Table 2)

State Source T0 B0 D0

A Ad 0 36.80 0.0158
vHP 0 36.68
Exp 0 36.53 0.0145

B Ad 2650.5 34.16 0.0159
vHP 2921.3 33.33
Exp 2563.3 34.18 0.0158

C Ad 12455.0 30.62 0.0151
vHP 12262.6 30.18
Exp 12488.0 30.50 0.0143

D Ad 18203.4 34.48 0.0158
vHP 18085.0 33.90
Exp 18212.8 33.28 0.0179

E Ad 18838.1 33.98 0.0158
vHP 18764.8 33.09
Exp 18762.0 33.69 0.0141

Table 4. HeD spectroscopic
constants (cm)1) with and
without adiabatic corrections.
(for abbreviations see Tables 1
and 2)

State Source Y10 Y20 Y01 Y11 Y02

�xe� �ÿxex� �Be� �ÿae� �ÿDe�
HeD+ X BO 2495.7 )92.3 20.97 )1.28 )0.0059

Kolos 2495.2 )92.2 20.98 )1.27 )0.0059
A Ad 2872.9 )91.99 22.92 )1.22 )0.0058

BO 2871.9 )91.9 22.94 )1.22 )0.0059
B Ad 2574.9 )91.0 21.32 )1.23 )0.0058

BO 2577.6 )91.1 21.34 )1.23 )0.0058
C Ad 2253.8 )85.0 19.18 )1.19 )0.0055

BO 2254.7 )85.0 19.21 )1.19 )0.0055
D Ad 2583.2 )78.4 21.54 )1.30 )0.0059

BO 2603.8 )94.5 21.53 )1.23 )0.0059
E Ad 2579.4 )109.3 21.15 )1.21 )0.0056

BO 2519.9 )92.6 21.08 )1.25 )0.0059
F BO 2474.1 )90.4 20.89 )1.29 )0.0059
12D(G) BO 2506.0 )92.7 21.05 )1.26 )0.0059
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allows D levels that are below the D asymptote to pre-
dissociate by coupling to continuum C states, giving
n � 2 H atoms as a product. The extreme predissocia-
tion rate can be expected to show a larger di�erence
between static and coupled channel calculations, but this
does not seem to be the case. The Golden Rule results of
Petsalakis et al. [13, 34] are slightly lower than our
widths which agree well with coupled channel calcula-
tions [14, 33].

A very accurate full coupled channel treatment of the
six lowest HeH states was recently performed by Vegiri
[16], whereas van Hemert and Peyerimho� [14] have
concentrated on two-states coupled channel calculations
for the X/A and C/D states. In the latter study the
couplings between the C/D states were not computed for
energies above the C state asymptote. Predissociation
widths are thus only obtained for the A state. The results
are in good agreement with experiment. Samples of the
necessary matrix elements are tabulated in the paper,
and these agree well with ours. By an R-dependent
scaling procedure to correct the potential curves, they
are able to bring their ®nal rotation-vibration levels into
almost perfect agreement with experiment. The e�ect of
the C/D coupling on level shifts is pronounced for some
levels.

For the X/A coupling, an interesting approach is that
of Honigmann et al. [35]. They use quadrupole matrix
elements to de®ne quasidiabatic wave functions, and
assume that all derivative couplings are negligible in this

basis. Furthermore, they use a complex dilation method
to obtain resonances. The widths they obtain for the A
states are the smallest reported: about 3 cmÿ1 for the
lowest A level. These values are still not unreasonable,
and are in fact in better agreement with experiment than
most other calculations. However, with no independent
way of assessing the approximation of neglecting deriv-
ative couplings in the quasidiabatic basis, it should not
be compared with other studies.

For non-rotational states, Vegiri and Nicolaides [33]
studied the predissociation of the A, C, and D states
using multistate coupled channel calculations (called
multistate approach). Predicted C widths are quite dif-
ferent from ours which is essentially due to the more
general treatment applied in that study. This can also be
seen from comparison of the multistate results with
those of an earlier calculation by Petsalakis et al. [13]
where both studies use the same matrix elements as an
input but arrive at di�erent results. A more complete
multistate calculation was performed by Vegiri [16] in
which rotational couplings and higher N quantum
numbers were also included. Obviously the more elab-
orate treatment has a strong e�ect on the widths which
largely explains the di�erences to the results of the
present study which were obtained from the Golden
Rule formula. However, there is also disagreement be-
tween the present results and other Golden Rule results
of Refs. [13, 34] which can only be explained by the fact
that the coupling matrix elements used in these calcu-

Table 5. Total widths (cm)1)
of A, C, and D states with
N � 0 of HeH and HeD. PTB
Petsalakis et al. [13], vHP van
Hemert and Peyerimho� [14],
VN Vegiri and Nicolaides [33],
V Vegiri [16]

State Source v0 � 0 1 2 3 4

PTB 4.3 11.6 20.9 28.4 34.5
HeH A vHB 5.1 15.0 25.0

VN 4.4 11.9 22.2 28.2 31.7
This work 5.07 16.0 27.8 37.4 44.3

HeD A vHP 1.2 4.0 8.0
This work 1.20 3.94 11.5 6.88
PTB 0.0054 0.0239 0.0277 0.0228 0.0013

HeH C VN 0.011 0.083 0.32 0.80 0.63
V 0.023 0.055 0.209 ± 0.303
This work 0.00047 0.00096 0.0018 0.0030

HeD C V ± 0.002 0.007 0.009 0.032
This work 0.00034 0.00051 0.00053 0.00091
PTB 0.0080 0.0080 0.0113 0.0133 0.0131

HeH D VN 0.0024 0.113 1.75 21.1 20.5
V <10ÿ5 0.48
This work 0.0013 0.0046 0.0115 0.0149 0.0212

HeD D V 0.007 0.016 0.044
This work 0.00017 0.0214 0.0015 0.94 0.58

Table 6. Partial radiative rates/
106 s)1 for decay to the X
electronic state, and the total
radiative lifetime srad0 . (PTB
Petsalakis et al. [13]

v0 � 0 1 2 3 srad0 (ns)

A! X PTB 22.8 31.2 39.2 47.1 43.8
This work 18.6 26.4 34.0 41.7 53.8

B! X PTB 56.0 74.8 97.5 124.0 17.8
This work 62.5 82.3 107.0 137.0 15.9

C! X PTB 43.6 48.7 54.6 61.8 15.2
This work 36.8 40.8 45.7 52.5 16.1

D! X PTB 12.4 16.1 20.3 25.6 39.3
This work 13.6 22.8 37.9 53.9 32.5

E! X PTB 8.0 14.0 21.7 31.3 31.0
This work 0.7 0.4 1.2 1.9 52.4
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lations are di�erent. To some extent this also a�ects the
disagreement with the multistate results of Refs. [16, 33].
The matrix elements used there were actually taken from
two di�erent sources: rotational couplings from van
Hemert and Peyerimho� [14] and transition moments
and radial couplings from Refs. [17, 18].

The transition moments collected in Table 5 of Ref.
[17] and in Table 4 of Ref. [18] are in obvious dis-
agreement with the present calculations. The magnitude
and the R dependences of the X-E and C-E transition
moments are di�erent and there appear to be sign er-
rors in the C-A, D-C, and C-B moments of Ref. [18].
The non-adiabatic matrix elements in Ref. [18] also
seem to have some inconsistent signs. We suggest that
the X-A, X-C, and X-D columns have the wrong sign
for d=dR at 3a0 such as the A-D values for R values less
than 1a0. The d2=dR2 elements are less easy to compare,
since the authors collect matrix elements of the type
hd=dRjd=dRi under this heading (see the note in Ref.
[30] of Ref. [31]).

The matrix elements of Petsalakis et al. have been
used in several later studies. Petsalakis and coworkers
used them to compute radiative and non-radiative rates
[13]. Their Table 1 gives radiative rates for transitions
from the A, C, and D N � 0 states and from the B and

E N � 1 states, with v � 0 . . . 5, to the X state. Their
rates for the states A to D are quite similar to ours
except that our D rates have a faster increase with v0
(see Table 6).

The E! X rates of Ref. [13] are 10±30 times larger
than ours. This appears, however, to be due to the
di�erent de®nition of the states. Their states are
diabatic and at shorter distances the X state is thus a
mixture of adiabatic X and A states with the e�ect that
their E! X transition rates borrow intensity from the
E! A rates. The total radiative lifetimes reported in
Ref. [13] are not too di�erent from ours, which means
that the dominant E-A transitions are computed with
similar rates.

Di�erences in the non-radiative rates are more di�cult
to trace back.These rates are very sensitive to details of the
vibrational wave functions and of the matrix elements.
The predissociation rates derived in other studies for theC
state are quite di�erent from ours and this is also true for
the lowest vibrational levels of the D state. Apart from
obvious reasons for some of the disagreements so that a
multistate calculation is actually needed to determine
reliable non-radiative rates, an additional source for the
discrepancies is the apparent di�erences in the matrix
elements used in these calculations.

Table 7. Radiative decay rates
from the states A, C, and D
partitioned by ®nal electronic
state. Units are 106 s)1

v0 N 0 � 0 1 2 3 4 5 6 7

A! X 0 18.6 18.7 18.9 19.1 19.5 19.9 20.5 21.1
1 26.4 26.5 26.7 26.9 27.3 27.7 28.3 28.9
2 34.0 34.1 34.3 34.6 34.9 35.4 36.0 36.6
3 41.7 41.8 42.1 42.4 42.8 43.3 43.9 44.7
4 50.1 50.2 50.5 50.8 51.3 51.9 52.7 53.6

C! X 0 36.8 36.9 36.9 37.1 37.2 37.4 37.7 38.0
1 40.8 40.8 40.9 41.1 41.3 41.6 41.9 42.3
2 45.7 45.8 45.9 46.2 46.4 46.8 47.3 47.8
3 52.5 52.6 52.8 53.1 53.6 54.2 54.9 55.7

C! A 0 23.8 23.8 23.8 23.7 23.7 23.6 23.5 23.3
1 21.0 20.9 20.9 20.8 20.8 20.7 20.6 20.4
2 18.3 18.3 18.3 18.2 18.1 18.0 17.9 17.8
3 16.0 15.9 15.9 15.8 15.8 15.7 15.5 15.4

C! B 0 1.4 1.4 1.4 1.4 1.4 1.3 1.3 1.2
1 1.3 1.3 1.2 1.2 1.2 1.2 1.1 1.1
2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.0
3 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.1

D! X 0 13.6 13.7 13.8 14.0 14.2 14.6 15.0 15.5
1 22.8 22.9 23.2 23.5 24.0 24.7 25.4 26.4
2 37.9 38.0 38.4 39.0 39.7 40.7 41.8 43.2
3 53.9 54.1 54.4 54.8 55.4 56.1 56.8 57.7
4 69.2 69.4 60.2 60.4 60.8 71.8 72.9 74.1

D! A 0 4.4 4.4 4.4 4.3 4.2 4.1 4.0 3.9
1 3.6 3.5 3.5 3.5 3.4 3.3 3.2 3.1
2 3.3 3.3 3.3 3.3 3.3 3.2 3.2 3.2
3 3.4 3.4 3.4 3.4 3.3 3.3 3.2 3.1
4 2.4 2.4 2.8 2.8 2.8 2.2 2.1 2.0

D! B 0 11.3 11.3 11.3 11.3 11.4 11.4 11.5 11.5
1 13.2 13.2 13.3 13.4 13.5 13.7 13.9 14.1
2 17.9 17.9 18.0 18.2 18.5 18.8 19.1 19.5
3 22.1 22.1 22.1 22.2 22.2 22.2 22.2 22.2
4 20.4 20.4 20.8 20.8 20.8 20.2 20.0 19.9

D! C 0 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6
1 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9
2 0.8 0.8 0.9 0.9 1.0 1.1 1.3 1.6
3 6.0 6.1 6.3 6.5 6.8 7.1 7.4 7.8
4 10.5 10.5 8.2 8.2 8.2 10.7 10.8 10.8
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3.3 Predissociation yields

The radiative rates in Tables 7 and 8 depend rather
smoothly on v0 and N 0, whereas their non-radiative
counterparts collected in Table 9 show a less regular
dependence. This is essentially caused by resonances,

and their positions and strengths depend sensitively on
several details of the calculation. For the A! X
transitions the radial coupling matrix element multiplied
by the initial state wave function is largest at quite short
distances close to the Franck-Condon point. The
continuum wave function starts to oscillate very rapidly

Table 8. Radiative decay rates
from the states B, E, and G
partitioned by ®nal electronic
state. Units are 106 s)1

v0 N 0 � 1 2 3 4 5 6 7

B! X 0 62.5 62.9 63.4 64.2 65.1 66.3 67.7
1 82.3 82.8 83.5 84.5 85.8 87.4 89.2
2 106.8 107.5 108.5 109.8 111.5 113.6 116.1
3 137.3 138.1 139.5 141.3 143.6 146.4 149.7
4 175.3 176.5 178.3 180.7 183.8 187.6 192.1

B! A 0 0.3 0.3 0.2 0.2 0.2 0.2 0.2
1 0.2 0.2 0.2 0.2 0.2 0.2 0.2
2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
3 0.1 0.1 0.1 0.1 0.1 0.1 0.1
4 0.1 0.1 0.1 0.1 0.1 0.1 0.1

E! X 0 0.7 0.7 0.7 0.8 0.8 0.8 0.8
1 0.4 0.4 0.4 0.4 0.4 0.4 0.5
2 1.2 1.2 1.2 1.3 1.3 1.4 1.4
3 1.9 1.9 1.9 1.9 1.9 1.9 2.0
4 2.0 2.0 2.0 2.0 2.0 2.0 2.0

E! A 0 11.1 11.1 11.1 11.0 11.0 10.9 10.8
1 8.6 8.6 8.5 8.4 8.3 8.2 8.1
2 6.8 6.7 6.7 6.7 6.6 6.6 6.5
3 6.0 5.9 5.9 5.9 5.9 5.8 5.8
4 5.6 5.6 5.6 5.6 5.6 5.6 5.7

E! B 0 3.4 3.4 3.5 3.7 3.8 4.0 4.3
1 9.3 9.4 9.6 9.8 10.2 10.6 11.0
2 15.1 15.2 15.4 15.6 15.8 16.1 16.5
3 18.8 18.8 19.0 19.2 19.4 19.6 19.9
4 21.7 21.8 21.9 22.0 22.2 22.4 22.7

E! C 0 3.8 3.8 3.9 3.9 4.0 4.1 4.2
1 5.6 5.7 5.7 5.8 5.9 6.0 6.2
2 7.1 7.2 7.2 7.3 7.4 7.4 7.5
3 8.0 8.1 8.1 8.2 8.2 8.3 8.4
4 8.6 8.7 8.7 8.7 8.7 8.8 8.8

G! B 0 34.5 34.6 34.6 34.6 34.6 34.6
1 34.5 34.5 34.5 34.5 34.5 34.5
2 34.3 34.3 34.4 34.4 34.4 34.4
3 34.2 34.2 34.2 34.2 34.2 34.2
4 34.0 34.0 34.0 33.9 33.9 33.9

Table 9. Non-radiative decay
rates from the states A, B, D,
and E partitioned by ®nal
electronic state. Units are
1010 s)1

v0 N 0 � 0 1 2 3 4 5 6 7

A! X 0 95.6 105.8 103.9 97.7 83.2 86.3 77.9 91.2
1 301.4 296.7 295.4 275.7 260.2 243.1 225.1 203.3
2 523.2 517.0 496.9 475.8 452.7 431.2 389.4 358.9
3 704.7 698.9 687.7 665.3 616.7 572.3 544.6 485.7
4 833.9 818.7 795.7 752.7 710.3 679.6 637.1 564.6

D! X 1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1
3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2
4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.9

D! C 2 0.0 0.0 1.4 0.2 3.2 1.5 0.1 1.4
3 0.0 1.4 0.7 0.2 2.0 0.2 0.1 10.3
4 0.0 3.8 10.1 0.3 0.2 5.5 0.1 0.7

B! X 0 0.0 0.0 0.0 0.1 0.1 0.1 0.1
1 0.0 0.1 0.1 0.2 0.3 0.4 0.5
2 0.0 0.1 0.3 0.6 0.6 0.7 0.9
3 0.1 0.2 0.4 0.6 0.8 1.0 1.2
4 0.1 0.2 0.4 0.7 0.9 1.2 1.5

E! C 1 0.0 0.0 0.0 0.0 0.0 0.1 0.0
3 0.0 0.3 1.9 1.2 0.7 11.7 0.9
4 0.1 0.3 1.0 1.2 5.9 2.0 1.0
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after its ®rst maximum. Thus the main contribution to
the transition rate comes from the size of the initial wave
function at a point somewhere on its left tail beyond the
turning point unless v0 is very high. This explains the
regular and rapid increase with v0 and the gradual,
roughly parabolic decrease with N 0 of this rate.

Other rates have a more complicated behavior in their
dependence upon wave functions and matrix elements.
Pronounced resonances can occur in the static approxi-
mation for decays to the C state at energies close to the
quasibound states. For this type of calculation, the reso-
nances are caused by a blowup (or, rarely, a shrinking) of
the inner part of the wave function inside the barrier when
imposing normalizing conditions on the asymptotic part.
Such resonances occur, for example, for the 4HeH species
for the D state with v � 2;N � 4, but particularly
for several of the 4HeD D states, for example,
v � 1;N � 5; v � 3;N � 0; 1; and v � 4;N � 0; 3.

Our calculations are incomplete in that the direct
predissociation of higher C state levels by tunneling
through the barrier has not been studied. The rates for D
states coupling to the C state above the C dissociation
limit are still valid, although within the static (Golden
Rule) picture. However, level shifts of the stronger res-
onances will change the appearance of these resonances,
and a detailed description will not be valid without in-
cluding at least the C/D coupling already in the deter-
mination of the wave functions.

Recent experiments by Semaniak et al. [36] and
Str�omholm et al. [37] show that capture of low-energy
electrons results in mainly H (n=2) atoms. States with
K > 1 can be assumed to decay only via processes that
lower K. At the end of the decay chain, it is natural for
K � 1 to yield H (n=2), since this is the dissociation
product of the lowest II state. However, the R states
could go via the A state, which would immediately (in
0.1 ps or less) go to the X state and produce high-ve-
locity H 1s atoms. We conclude that the processes that
convert electronic energy to nuclear kinetic energy must
have avoided this route. Two theoretical calculations
give di�erent results: Sarpal et al. [38] predict production
of H 1s atoms, while Guberman [39] predicts n � 2
products, in agreement with experiments.

Our results say nothing about the initial steps in the
electron capture process. However, for the capture of low-
energy electrons byHeH�Xstate ions, some trends can be
derived based on simple energy conservation consider-
ations. The initial state has an energy slightly above the
HeH� ground state. The rotational quantum number N�
of the ion is of course small, but not much can be said
about the l quantum number of the electron. Thus, ini-
tially we have a reasonably well de®ned energy, but the
rotational quantum number N of the neutral HeH state
formed will be distributed over a fairly wide range. The D
state and all the higher ones have asymptotes above the
HeH� X state. For the D state, the available energy im-
plies that primarily the v � 4 level is populated. Our re-
sults show that a bound D state with v � 4, with any
realistic distribution of initial N , will produce primarily a
decaying C state. This is thus a plausible last step in the
DR and is in full agreement with experimental ®ndings
and with the theoretical results of Ref. [39].

4 Summary and conclusions

This paper is the ®rst study of the DR process. Potential
curves have been obtained for the ten lowest states of
HeH: those that dissociate to H atoms with n � 1; 2, and
3. For the six states X up to E, all matrix elements have
been evaluated to allow full multistate coupled channel
calculations, and also those matrix elements coupling
these with the remaining higher states G, H, and I.
However, at this stage, only uncoupled calculations have
been done.

The resulting spectroscopic constants agree very well
with experimental results, where these are available. The
predissociation widths and yields, computed from the
adiabatic wave functions by the Golden Rule, are in some
cases in marked disagreement with other recent calcula-
tions. This is explained by the di�erent matrix elements.
Many of the values we have computed are in disagree-
ment with the currently most used set of data. Our matrix
elements are available on request for further studies.

The calculated yields are in agreement with recent
experimental results. It seems likely that a common ®nal
step is predissociation of the D state, with v0 � 4, to
produce a dissociating C state which yields excited H
atoms with n � 2.

The matrix elements missing from this study are those
that couple the higher states, G, H, and I, with each
other, and thus also the diagonal elements needed for
adiabatic correction of the potential curves. We intend
to complement this paper by a forthcoming study where
these elements are also included, and also to make a full
coupled channel calculation involving all ten lowest
states. However, we do not anticipate any major change
in the results, except of course those that involve certain
resonances.

However, a greater concern is to study the full elec-
tron capture process. It does not seem very pro®table to
extend the present study to include the n � 4 manifold.
Instead, we are presently writing programs that allow
the description of the full capture and dissociation pro-
cess in terms of coupled one-electron problems. This
approach will be necessary for larger systems.
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